Aspergillosis - new data and challenges

David W. Denning National Aspergillosis Centre University Hospital of South Manchester The University of Manchester

How many patients are there with serious fungal infection? SAFS Diagnostics - progress and gaps Voriconazole TDM

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

FEAR OF FUNGI

Emerging pathogens threaten natural ecosystems and food security PAGE 186

600 different fungi are human pathogens

Resistance and Virulence changes

Globalization

More species extinction due to fungi than bacteria or viruses

Chytridiomycosis in amphibian spp

Published by AAAS

Gordon D. Brown is a professor at the Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD, UK. E-mail: gordon. brown@abdn.ac.uk.

Online sciencemag.org Podcast interview (http://scim.ag/ ed_6082) with author Gordon D. Brown.

Tackling Human Fungal Infections

FUNGI INFECT BILLIONS OF PEOPLE EVERY YEAR, YET THEIR CONTRIBUTION TO THE GLOBAL BURDEN of disease is largely unrecognized. Most are "relatively" minor infections, but millions contract diseases that kill at least as many people as tuberculosis or malaria. Although true mortality rates are unknown because of a lack of good epidemiological data, the incidence of invasive fungal infections is rising as a result of modern medical interventions and immu-

Over 300 million people affected by serious Fungal Infection worldwide

www.fungalresearchtrust.org/HowCommonareFungalDiseases5.pdf

Disease Most common species	Location	Estimated Life-Threatening Infections / Year at that Location ^a	Mortality Rates (% in infected populations) ^a
Opportunistic Systemic Myco	ses		
Aspergillosis Aspergillus fumigatus	worldwide	>200,000	30 - 95%
Candidiasis Candida albicans	worldwide	>400,000	46 - 75%
Cryptococcosis Cryptococcus neoformans	worldwide	>1,000,000	20 - 70%
Mucormycosis Rhizopus oryzae	worldwide	>10,000	30 - 90%
Pneumocystis Pneumocystis jirovecii	worldwide	>400,000	20 - 80%
Endemic Dimorphic Mycoses			
Blastomycosis Blastomyces dermatitidis	Midwestern and Atlantic U.S.	~3,000	<2% - 68%
Coccidioidomycosis Coccidioides immitis	Southwestern U.S.	~25,000	<1% - 70%
Histoplasmosis Histoplasma capsulatum	Midwestern U.S.	~25,000	28 - 50%
Paracoccidioidomycosis Paracoccidioides brasiliensis	Brazil	~4,000	5 - 27%
Penicilliosis Penicillium marneffei	SouthEast Asia	>8,000	2 - 75%

Human fungal infections: the hidden killers

Brown[,] Denning, Gow, Levitz, Netea and White (2012) Sci. Trans. Med.

The intersection of serious fungal diseases with TB, AIDS, cancer, asthma and COPD

Fungal Infection	Global burden of serious fungal infection (estimates by underlying disease)					
	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care	
Cryptococcal meningitis						
Pneumocystis pneumonia	_					
Invasive aspergillosis						
Chronic pulmonary aspergillosis						
Fungal eye infection						
Fungal hair infection		1	I		I	

Fungal Infection	Global burden of serious fungal infection (estimates by underlying disease)					
	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care	
Cryptococcal meningitis	1,000' s	1,000,000		1,000' s		
Pneumocystis pneumonia		>200,000		>100,000		
Invasive aspergillosis			>100,000	>50,000	>50,000	
Chronic pulmonary aspergillosis			3,000,000			
Fungal eye infection	1,000,000					
Fungal hair infection	200 million					

Fungal Infection	Global burden of serious fungal infection (estimates by underlying disease)					
	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care	
Cryptococcal meningitis	1,000' s	1,000,000		1,000' s		
Pneumocystis pneumonia		>200,000		>100,000		
Invasive aspergillosis			>100,000	>50,000	>50,000	
Chronic pulmonary aspergillosis			3,000,000			
Fungal eye infection	1,000,000					
Fungal hair infection	200 million					

Topic 5: The tremendous burden of cryptococcal meningitis in sub-Saharan Africa in persons with HIV/AIDS

Incidence 3,2%, 720,000 cases (144,000-1,3 million) 90d fatality: 90%

Park BJ et al. AIDS 2009 Comparison of deaths in sub-Saharan Africa due to HIV-related cryptococosis, and common infectious diseases excluding HIV, as estimated by WHO

Research

Global burden of chronic pulmonary aspergillosis as a sequel to pulmonary tuberculosis

David W Denning,^a Alex Pleuvry^b & Donald C Cole^c

1,170,000 patients (5 year period prevalence) 375,000 annual incident cases

~15% annual mortality

Fungal Infection	Global burden of serious fungal infection (estimates by underlying disease)					
	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care	
Candida infections						
Oral thrush		9,500,000	100,000's	millions		
Oesophageal candidasis		2,000,000				
Candida vaginitis 4x/yr	>75 million					
Candidaemia				100,000	200,000	
Candida peritonitis					75,000	

Fungal Infection	Global burden of serious fungal infection (estimates by underlying disease)					
	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care	
Candida infection	15					
Oral thrush		9,500,000	100,000's	millions		
Oesophageal candidasis		2,000,000				
Candida vaginitis 4x/yr	>75 million					
Candidaemia				100,000	200,000	
Candida peritonitis					75,000	

The size of the problem ~24 million patients affected each year

Some fungal infections

Disseminated *Penicillium marneffei* infection in AIDS from Thailand

Chromoblastomycosis from PNG

Coccidioidomycosis from Mexico

Oral candidiasis in AIDS from France

Disseminated histoplasmosis in AIDS

Onychomycosis from UK

Some fungal infections

Disseminated Penicillium marneticilitatection in AIDS from Thailand

Chromoblastomy cosis from PNG

Coccidioidemycosis

Oral candidiasis in AIDS from France

The severity of the problem

Deaths per year

- Cryptococcal meningitis 10% death rate in the USA, >80% in Africa. 600,000 deaths.
- Invasive aspergillosis 50% mortality treated, 100% if not. >100,000 deaths
- Chronic pulmonary aspergillosis 15% annual mortality, 450,000 deaths.
- Pneumocystis pneumonia ~15% mortality in AIDS, ~50% non-AIDS, >80,000 deaths.
- Candida bloodstream infection ~40% mortality, 120,000 deaths
- SAFS increased risk of asthmatic death (estimated to be 100,000 annually worldwide)

Reality check with TB

	TB (2008)	Fungal Infection
Incident cases	9-10 million	>14 million
Prevalent cases	10-13 million	~285 million
HIV related deaths	~550,000	~650,000
Non-HIV related deaths	~1,500,000	>700,000

FUNGAL EDUCATION

Chronic fungal infections

Free col	Global burden of serious fungal infection (estimates by underlying disease)					
Infection	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care	
Cryptococcal meningitis	1,000' s	1,000,000		1,000' s		
Pneumocystis pneumonia		>200,000		>100,000		
Invasive aspergillosis			>100,000	>50,000	>50,000	
Chronic pulmonary aspergillosis			3,000,000			
Fungal eye infection	1,000,000					
Fungal hair infection	200 million					

LEADING INTERNATIONAL FUNGAL EDUCATION

Recurrent and chronic fungal infections

Fungal Infection	Global burden of serious fungal infection (estimates by underlying disease)					
	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care	
Candida infectio	ons					
Oral thrush		9,500,000	100,000' s	millions		
Oesophageal candidasis		2,000,000				
Candida vaginitis 4x/yr	>75 million					
Candida bloodstream infection				100,000	200,000	

Allergic lung disease

ABPA		4,000,000		
SAFS		>3,500,000		

LEADING INTERNATIONAL FUNGAL EDUCATION

The severity of the problem

III health and morbidity

- Oral and oesophageal thrush unpleasant, reduced food intake and weight loss.
- Candida vaginitis anxiety and impaired sex life
- ABPA and SAFS breathlessness with severe asthma, reducing work capability
- Chronic pulmonary aspergillosis progressive breathlessness and weight loss
- Fungal eye infection unilateral blindness
- Fungal hair infection psychological problems and contagious

Asthma and Aspergillus

79 adult asthmatics and 14 controls

Patients sensitised to *A. fumigatus* compared with nonsensitised asthmatics had: lower lung function (% pred. FEV1 68% vs 88% p < 0.05), more bronchiectasis (68% versus 35% p < 0.05) and more sputum neutrophils (80.9% vs 49.5% p < 0.01).

Fairs et al, Am J Respir Crit Care Med 2010; July 16

Severe asthma and aspergillosis in ICU

57 of 357 (16%) admitted ICU with acute asthma Compared with 755 outpatients with asthma

Aspergillus skin prick test used to screen for aspergillus hypersensitivity, if positive IgE etc for ABPA checked Aspergillus positive ABPA Asthma in ICU 29/57 (51%) 22/57 (39%) Outpatient asthma 90/755 (39%) 155/755 (21%) P value 0.01 0.001

Agarwal et al, Mycoses 2009 Jan 24th

Severe asthma with fungal sensitisation (SAFS)

Criteria for diagnosis

- Severe asthma (BTS step 4 or 5) AND
- RAST (IgE) positive for any fungus
 OR
- Skin prick test positive for any fungus AND
- Exclude ABPA (ie total IgE <1,000 iu/mL)

Denning et al, Eur Resp J 2006; 27;27:615

Comparison of ABPA and SAFS serology

<u>AB</u>	PA results	n	ormal range	date 1	date 2
Patient					
1	Total IgE aspergillus.f	KIU/l KUa/l	(0.1-100.0) (0-0.4)	1900.0 41.6	3000.0 49.2

SAFS results

2	

Total IgE	KIU/l	(0.1-100.0)	200.0	260.0
aspergillus.f	KUa/l	(0-0.4)	4.5	5.2

Skin prick testing - example of SAFS result

Cladosporium +ve

O' Driscoll, unpublished

MANCHESTER

O' Driscoll et al, Clin Exp Allergy. In press

Fungal sensitisation in severe asthma number sensitised to one or more fungi

O' Driscoll et al, Clin Exp Allergy. In press

Distinguishing different forms of aspergillosis

Disease group					
	CCPA	ABPA + CCPA	ABPA	SAFS	SAFS
n	116	16	98	52	52
Median serum IgE level (IQR)	99.8 (26.4-350) (n=107)	2739 (1100-7500) (n=16)	2300 (1100-4550) (n=97)	370 (140-750) (n=52)	
<i>Aspergillus</i> specific IgG	93.6% (103/110)	81.3% (13/16)	65.4% (53/81)	35.9% (14/39)	
Positive fungal culture	25% (29/116)	25.0% (4/16)	23.5% (23/98)	21.2% (11/52)	

Distinguishing different forms of aspergillosis

Disease group					
	CCPA	ABPA + CCPA	ABPA	SAFS	SAFS
n	116	16	98	52	52
Median serum IgE level (IQR)	99.8 (26.4-350) (n=107)	2739 (1100-7500) (n=16)	2300 (1100-4550) (n=97)	370 (140-750) (n=52)	
<i>Aspergillus</i> specific IgG	93.6% (103/110)	81.3% (13/16)	65.4% (53/81)	35.9% (14/39)	
Positive fungal culture	25% (29/116)	25.0% (4/16)	23.5% (23/98)	21.2% (11/52)	
Positive specific IgE					Positive SPT
Mixed mould	N/T	N/T	88.9% (8/9)	90.9% (20/30)	100% (2/2)
A. fumigatus	37.7% (40/106)	93.8% (15/16)	96.9% (94/97)	78.8% (41/52)	90.9% (20/30)
Alternaria alternata	10.0% (1/10)	100% (10/10)	77.5% (55/71)	32.5% (13/40)	47.4% (9/19)
C. albicans	33.3% (3/9)	90.0% (9/10)	81.4% (57/70)	37.5% (15/25)	52.6% (10/19)
Cladosporium herbarum	20.0% (2/10)	80.0% (8/10)	70.4% (50/71)	24.4% (10/41)	35.5% (6/17)
Penicillium chrysogenum	27.3% (3/11)	100% (10/10)	85.3% (58/68)	30.0% (12/40)	43.8% (7/16)
Trichophyton mentagrophyte	33.3% (2/6)	100% (3/3)	65.2% (30/46)	25.0% (9/36)	23.1% (3/13)
MANCHESTER					

MAINCHESTER 1824

```
<u>Unpublished</u>
```

Randomised studies of antifungals and ABPA and/or asthma

Disease	Antifungal, duration	Benefit?	Author, year
ABPA	Natamycin inh, 52 wks	No	Currie, 1990
ABPA	Itraconazole, 32 wks	Yes	Stevens, 2000
ABPA	Itraconazole, 16 wks	Yes	Wark, 2003
"Trichophyton" asthma	Fluconazole, 20 wks	Yes	Ward, 1999
SAFS	Itraconazole, 32 wks	Yes	Denning, 2009

Therapy of allergic aspergillosis

Therapy	Typical dose	Typical duration	Objectives of therapy	Monitoring	Comments
Prednisone	Adults	10 days - 6 weeks,	Improvement of wheeze	Chest radiograph and clinical.	Attempt to stop in all patients;
(prednisolone)	40-50 mg qd	depending on response.	and allows resolution of	IgE slow to fall; expected to	sometimes not possible.
	Pediatrics	preduisone after 1-2	mucoid impactions.	Blood glucose	
	0.5-1 mg/kg/day	weeks for longer term treatment.		blood glacose.	
Inhaled	Variable	Long term.	Asthma control. Of no	PF, FEV-1, symptoms.	Interactions with itraconazole,
corticosteroids			proven value for exacerbation of ABPA.		increasing exposure.
Hypertonic saline,	5mL, 6% or 7% qd or bid	Exacerbations or long	Reduce viscosity of	Sputum thickness, ease of	Always challenge first dose under
nebulized		term.	sputum to ease	expectoration and dyspnea.	supervision, as bronchospasm an
			expectoration.		<1.0 L/sec.
Azithromycin	Adults	Long term.	Airway anti-inflammatory	Cough frequency and	If no effect after ~2-3 months,
	250 mg qd or 3x weekly		action.	nocturnal wakening.	should be stopped.
				Sputum production.	
Omaluzimab	75-600 mg SC 2-4 weekly	Long term, if effective	Reduction in IgE-mediated	Asthma control.	Limited experience in ABPA.
		at 16 weeks.	asthma.		

Knutsen et al. J All Clin Immunol 2012;129:280

Proof of concept RCT of itraconazole Rx in Severe Asthma with Fungal Sensitisation – quality of life improvement

P= 0.014

Denning et al, Am J Resp Crit Care Med 2009; 179:11

Second and third line antifungal therapy for ABPA and/or asthma

- 26 patients, ABPA (n = 21) or SAFS (n = 5).
- All patients had failed itraconazole (n=14) or developed adverse events (AEs) (n=12)
- 34 courses of therapy, 25 with voriconazole and 9 with posaconazole.

0

Chishimba et al, J Asthma 2012;49:423

Impact of voriconazole and posaconazole on ABPA and SAFS retrospective

		Clinical outcome of courses of therapy (%)			
		3 months	6 months	12 months	
ABPA					
Voriconazole	Improved	13/20 (65)	11/15 (73)	9/13 (69)	
	Stable	2/20 (10)	2/15 (13)	2/13 (15)	
	Failure	1/20 (5)	0/15	2/13 (15)	
	Discontinued (AEs)	4/20 (20)	2/15 (13)	0/13	
Posaconazole	Improved	7/9 (78)	7/9 (78)	7/9 (78)	
	Stable	2/9 (22)	2/9 (22)	0/9	
	Failure	0/9	0/9	2/9 (22)	
	Discontinued (AEs)	0/9	0/9	0/9	
SAFS					
Voriconazole	Improved	4/5 (80)	4/5 (80)	3/4 (75)	
	Stable	1/5 (20)	1/5 (20)	1/5 (20)	
	Failure	0/5	0/5	0/5	
	Discontinued (AEs)	0/5	0/5	0/5	

Notes: AEs, adverse events; ABPA, allergic bronchopulmonary aspergillosis; SAFS, severe asthma with fungal sensitization. () indicates %.

Second and third line antifungal therapy for ABPA and/or asthma

• 26 patients, ABPA (n = 21) or SAFS (n = 5).

- All patients had failed itraconazole (n=14) or developed adverse events (AEs) (n=12)
- 34 courses of therapy, 25 with voriconazole and 9 with posaconazole.

18/24 (75%) discontinued oral corticosteroids, 12 of them within 3 months of starting antifungal therapy.
6/23 (26%) patients on voriconazole had AEs requiring discontinuation before 6 months compared to none on posaconazole (p=0.15).
4 relapsed (57%), 1 at 3 months and 3 at 12 months after

• 4 relapsed (57%), 1 at 3 months and 3 at 12 months at discontinuation.

Itraconazole inhaled steroid interaction

- Itraconazole reduces the metabolism of inhaled steroids
- Documented for beclomethasone, fluticasone
- Ciclosenide probably not
- No interaction with prednisolone, dexamethasone, hydrocortisone
- Reduces metabolism of methylprednisolone
- [Voriconazole reduces prednisolone metabolism, but probably no interaction with inhaled steroid]

Fungal Infection Impact

No studies assessing:

Disability Adjusted Life Years (DALY) Quality Adjusted Life Years (QALY) Quality-adjusted life expectancy (QALE) Population health-related quality of life (HRQOL)

Diagnostic improvements in fungal diagnosis in last 20 years

- Aspergillus antigen testing
- Susceptibility testing of Candida and Aspergillus
- Chromagar
- CT scanning of the chest
- PCR for Pneumocystis, Aspergillus, Candida and Trichophyton
- Molecular identification of fungi and discovery of numerous cryptic species
- Direct identification from blood culture or agar plates
- Rapid dip-stick test for cryptococcal meningitis

Direct detection of resistance mutations in clinical specimens, without positive cultures

Laboratory result	ABPA	СРА	Normals
Culture positive for <i>A. fumigatus</i>	0/19	7/42 (16.7%)	0/11
qPCR positive for <i>Aspergillus</i> spp	15/19 (78.9%)	30/42 (71.4%)	4/11 (36.4%)
<i>A. fumigatus</i> CYP51A mutation detected directly from qPCR positive sample	6/8 (75%)	12/24 (50%)	NT

Denning, Clin Infect Dis 2011;52:1123

Evaluation of processing methods for Aspergillus - sputa and bronchoscopy samples

Literature review

2 papers

Journal of Microbiological Methods 85 (2011) 75-81

Homogenisation of cystic fibrosis sputum by sonication – An essential step for *Aspergillus* PCR

Caroline G. Baxter^{a,b,c,*}, Andrew M. Jones^{b,c}, Kevin Webb^{b,c}, David W. Denning^{a,c}

^a The National Aspergillosis Centre, University Hospital of South Manchester, Southmoor Road, Manchester, M23 9LT, UK

^b Manchester Adult Cystic Fibrosis Unit, University Hospital of South Manchester, Southmoor Road, Manchester, M23 9LT, UK

^c The University of Manchester and the Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PL, UK

Medical Mycology May 2012, 50, 433-438

Routine processing procedures for isolating filamentous fungi from respiratory sputum samples may underestimate fungal prevalence

CATHERINE H. PASHLEY, ABBIE FAIRS, JOSEPH P. MORLEY, SHREEYA TAILOR, JOSHUA AGBETILE, MONA BAFADHEL, CHRISTOPHER E. BRIGHTLING & ANDREW J. WARDLAW Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK

healthcare

Voriconazole TDM

The Effect of Therapeutic Drug Monitoring on Safety and Efficacy of Voriconazole in Invasive Fungal Infections: A Randomized Controlled Trial

Wan Beom Park,¹ Nak-Hyun Kim,¹ Kye-Hyung Kim,^{1,a} Seung Hwan Lee,² Won-Seok Nam,² Seo Hyun Yoon,² Kyoung-Ho Song,¹ Pyoeng Gyun Choe,¹ Nam Joong Kim,¹ In-Jin Jang,² Myoung-don Oh,¹ and Kyung-Sang Yu² ¹Department of Internal Medicine, and ²Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Republic of Korea

110 patients randomised; 14% poor metabolizers [2C19A], mean age 55 years, 77% hematologic disease

Primary outcome was a reduction in adverse events

Prospective, assessor-blinded RCT with a 3 year enrolment 15 years +, enrolled with 4d of starting Vori [6mg/Kg ×2 loading then 4mg/Kg 12hourly oral or IV] to a. blood sampling on d4 and dose adjustment b. no TDM

If TDM, target trough level was 1.0-5.5mg/L. If <1.0mg/L, dose increased by 100% If >10mg/L, 1 dose missed and dose reduced by 50% If >5.5mg/L with an adverse event, same as >10mg/L If >5.5mg/L with no adverse event, dose reduced by 50% A switch to oral, or an interacting drug given TDM repeated after 4d

MANCHESTER

MANCHESTER 1824

Discontinuations

	TDM (n = 37)	Non-TDM (n = 34)	<i>P</i> Value
Treatment success	30 (81)	20 (59)	.04
Complete response	21 (57)	13 (38)	.12
Partial response	9 (24)	7 (21)	.71
Stable response	1 (3)	2 (6)	.60
Treatment failure	6 (16)	12 (35)	.07

<u>Survival</u>

	<u>6 weeks</u>	12 weeks	
TDM	80%	76%	
Non-TDM	66%	60%	p=0.14

Lower level and treatment success

Voriconazole trough level (mg/L)	Sensitivity (%)	Specificity (%)
≥ 0.5	100	18
≥ 1.0	95	27
≥ 1.5	88	36
≥ 2.0	73	46
≥ 2.5	55	82

Upper level and adverse events

Voriconazole trough level (mg/ L)	Sensitivity (%)	Specificity (%)
≥ 4.5	85	38
≥ 5.0	80	51
≥ 5.5	80	62
≥ 6.0	75	71
≥ 6.5	70	80

Challenging Recommended Oral and Intravenous Voriconazole Doses for Improved Efficacy and Safety: Population Pharmacokinetics–Based Analysis of Adult Patients With Invasive Fungal Infections

Andres Pascual,^{1,a} Chantal Csajka,^{2,4,a} Thierry Buclin,² Saskia Bolay,¹ Jacques Bille,³ Thierry Calandra,¹ and Oscar Marchetti¹

¹Infectious Diseases Service, ²Division of Clinical Pharmacology and Toxicology, Department of Medicine, and ³Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, and ⁴Department of Pharmaceutical Sciences, University of Geneva, Switzerland

Population PK (NONMEM) analysis on 505 samples in 55 patients receiving voriconazole
Suggest a minimum target of 1.5mg/L (>85% chance of response) and maximum of 4.5mg/L (<15% chance of neurotoxicity)
IV doses OK, with TDM
Oral doses should be higher: 300-400mg twice daily, with TDM

MANCHESTER 1824

Pascual et al, Clin Infect Dis 2012;55:381

Aspergillus does not solely affect humans; birds and animals can also develop aspergillosis, and some plant

www.LIFE-Worldwide.org

WELCOME TO LIFE AWARENESS. EDUCATION. SAVING LIVES

Over 300 million people are acutely or chronically infected by fungi, leading to death, long term illness, blindness, psychological problems and reduced work capacity. Many recent improvements in diagnostics and treatment have not reached treating clinicians in all countries, and access to appropriate diagnostics and simple antifungal agents is far from universal. This needs to change. LIFE is a growing organisation. It is led by Professor David Denning who has been caring for patients with fungal infection for 25 years. He leads the National Aspergillosis Centre, UK (the first national clinical centre devoted to any fungal disease) and manages a clinical and laboratory research team.

>> LEARN MORE

The University of Warshester The Manchester Museum

OUR SUPPORTERS

