Fungal infections in immunocompromised children

Adilia Warris MD PhD Pediatric infectious diseases specialist Radboud University Nijmegen MC

Epidemiology of pediatric IA

- 6 tertiary care medical centers US, 2000-05
- proven IA 78%, probable 22%
- 139 pediatric patients
 - hematologic malignancy 63%
 - ✓ inherited immunodeficiency 12%
 - solid organ transplant 12%
- etiology:
 - ✓ A. fumigatus 53%
 - ✓ A. flavus 16%
 - ✓ A. niger & A. terreus 5% (each)
 - ✓ A. nidulans 1%
- outcome:
 - ✓ 53% deceased (70% due to IA or with active IA)

Burgos, Pediatrics 2008

Neutrophil disorders

- Primary defects in neutrophil function are not common, but
 - Require aggressive and specific management
 - Lifelong prophylaxis in many cases

 Phagocytic cells are cornerstone of the innate immune system

PID & risk of IFI

1

Immune deficit	Clinical disorders	Fungal infections		
Humoral	XLA, AR-agammaglobulinemia, CVID, IgA-deficiency	very unlikely		
Cellular	SCID, diGeorge, hyper-IgM, Wiskott- Aldrich	sporadic, variable (<i>Candida</i> , <i>Aspergillus, Crypto</i> , dimorphic)		
Phagocytic 🤇	CGD MPO, LAD, congenital neutropenia	<i>Aspergillus</i> frequent in CGD, variable (<i>Candida, Aspergillus,</i> dimorphic)		
Complement	deficiencies specific factors or MBL	very unlikely		
Others	hyper-IgE syndrome CMC, defects IFNy/IL12	<i>Aspergillus</i> in HIES, variable (<i>Candida, Aspergillus, Crypto</i>) superficial in CMC		

reviewed by Antachopoulos, Eur J Ped 2007

PID & Invasive Aspergillosis

- Chronic granulomatous disease
 - ✓ Lifetime incidence IA 25-40%
 - ✓ Most common cause of death (~35%)
- Hyper-IgE syndrome
 - Occasionally observation of IA
 - Important cause of death

Host response to fungal infections

Nijmeegs Universitair Centrum voor Infectieziekten

Intracellular killing

- Reactive oxygen intermediates
 - \checkmark O₂ is reduced to \cdot O₂⁻ by NADPH
 - hydroxyl radicals (•OH) and
 - hydrogen peroxide (H_2O_2) by superoxide dismutase
- Lysosomal enzymes
 - Defensins, lactoferrin
 - activity pH-dependent
- Meyloperoxidase (MPO) from lysosomes
 - Fusion fagosome + lysosome

H₂O₂ + chloride > hypochloriet (HOCI) by MPO St Radboud

UMC

Chronic granulomatous disease

- XL (65%) and AR inheritance
- Defect in NADPH-oxidase complex
- Diminished oxidative response
- Life-threatening bacterial and fungal infections
- Exuberant inflammatory responses -> granuloma formation
- 1: 200.000

- 2nd most common infection caused by Aspergillus spp.
- invasive aspergillosis main cause of death (~35%)
- Aspergillus spp. main cause of pneumonia (20-41%)
- Aspergillus spp. main cause of osteomyelitis (~35%)
- Aspergillus spp. main cause of brain infections (38%)
- Candida spp. mainly as cause of lymphadenitis, meningitis and bloodstream infections
- Candida spp. less common cause of death (-6%)

van den Berg, PlosOne 2009 Winkelstein et al, Medicine 2000

Mould infection as presenting symptom in CGD

Multiple case-reports:

- Gastrointestinal zygomycosis due to Rhizopus
 microsporus var. rhizopodiformis in 10-month-old boy
- Chronic Fusarium infection in adult patient
- Disseminated intracranial aspergillosis in 8-year-old boy
- Invasive pulmonary aspergillosis in male neonate of 1 month of age
- Splenic abscesses caused by *Paecilomyces variottii* in a 21-month-old child

Dekkers, Med Mycol 2008; Wang, Diagn Microb Inf Dis 2005; Mouy, Arch Ped 1995; Alsultan, Ped Blood Cancer 2006; Mansoory, CID 2003

A. nidulans and CGD

- 25 reported patients
- 90% XL-CGD
- 75% lung invasion with direct spread to adjacent chest structures
- 20% bone infections
 - ✓ vertebrae 45%
 - ✓ ribs 37.5%

Henriet et al, submitted

A. nidulans and CGD

- Emericella nidulans (teleomorph)
- other species of *Emericella* rarely identified as agents of infections in humans
- Species not encountered in other groups of immunocompromised patiënt
- Increased virulence as shown by more easily dissemination to adjacent structures
- Associated with increased mortality when compared to *A. fumigatus* (50% vs. 5-10%)

Dotis, Int J Inf Dis 2004 Segal, Medicine 1998

Emericella spp. in CGD

E.nidulans	Lung biopsy	Proven IA	E.quadrilineata	NIH, Bet <mark>hesda</mark>
E.nidulans	Lung biopsy	Proven IA	E.quadrilineata	NIH, Bethesda
E.quadrilineata	BAL-fluid	Probable IA	E.quadrilineata	Nijmegen, NL
E.nidulans	Bone tissue	Proven IA	E.rugulosa	Thessaloniki, Greece
E.nidulans	Brain tissue	Proven IA	E.nidulans var. echinulata	
E.nidulans	Tissue	Proven IA	E.nidulans var. echinulata	Nijmegen, NL

Verweij et al, EID 2008

Susceptibilities of *Emericella* spp.

drug	<i>E.nidulans</i> (n=12)	<i>E.quadrilineata</i> (n=12)	significance 🕌
Amphotericin B	2.5	0.5	P < 0.05
Itraconazole	0.07	0.13	NS
Voriconazole	0.26	0.39	P < 0.05
Posaconazole	0.25	0.22	P < 0.05
Caspofungin*	0.01	1.83	P < 0.05

Verweij et al, EID 2008

Nijmeegs Universitair Centrum voor Infectieziekten

 R,DB,PC,MC-study: IFN-γ prophylaxis
 128 CGD-patients, median 15 years of age 87% antibacterial prophylaxis
 50 ug/m² s.c. 3x/week for 12 mo

Results:

1 (IFN-γ) versus 4 (placebo) patients with IPA (0.38 vs 1.1 cases/patient year)
in vitro no augmentation of superoxide production
augmenting oxygen-independent pathways

Gallin, NEJM 1991;324:509-16

R,DB,PC,CO-study: itraconazole prophylaxis 39 CGD-patients > 5 years of age antibacterial prophylaxis 34 patients on IFN-γ therapy Exclusion: antifungal therapy < 3 mo. fungal infection < 12 mo. daily use of prednisone

Gallin, NEJM 2003;348:2416-22

R,DB,PC,CO-study; 39 patients > 5 y

	Itraconazole	Placebo
Courses	61	63
Days	20,000	21,253
IFI (P=0.10)	1	7
SFI (P=0.06)	0	5
AE	3	0

╢

Gallin, NEJM 2003;348:2416-22

 Long-term antifungal prophylaxis may lead to the development of infections caused by azoleinduced resistant moulds as well as primarily non-susceptible moulds

Warris, NEJM 2002;347:2173-4

Verweij, NEJM 2003;349:1190-1

Antifungal drugs and CGD

- extra effect in lowering fungal infections by using both IFNy and itraconazole?
- overall infection rate: 0.6-0.8 / patient year
- severe infection rate: 0.2-0.4 / patient year
- follow-up studies:

UMC

- 1970s all deaths < 10 years of age</p>
- 1980s 50% mortality < 10 years of age</p>
- 1990s 50% alive > 20 years of age
- 2000: survival rate > 20 years is not changing

St Radboud Martire, Clin Imm 2007; Marcanio, CID 2004; Liese, J Ped 2000 Cale, Clin Exp Imm 2000; Weening, Eur J Ped 1995

Therapeutic options

- increased number of antifungals
 - more important to know which fungus causes the infection
 - analyse susceptibility pattern
 - prevent empiric therapy, especially after itra prophylaxis
 - A. fumigatus and A. nidulans most frequent
 - 1st choice: voriconazole
 - alternatives:
 - posaconazole
 - combination therapy: vori + echinocandin
 - in mice: cAmB + micafungin increased survival

Segal, CID 2005; Walsh, PIDJ 2002 Herbrecht, NEJM 2002; Dennis AAC 2006

- AD and AR form
- characterized by:
 - recurrent and often severe pulmonary infections
 - 🗸 eczema
 - staphylococcal abscesses
 - mucocutaneous candidiasis
 - various connective tissue, skeletal and vascular abnormalities (AD)
 - facial characteristics
 - retention of primary teeth

phagocytic defect?

- clinical epidemiology (30 pts):
 - Staphylococcal abscesses 87%
 - ✓ Recurrent pneumonia 87%
 - Lung cysts 77%
 - Mucocutaneous candidiasis 83%
- fungal infections:
 - pulmonary cyst chronically colonized with aspergillus and died of a mycotic (*A. fumigatus*) aneurysm of the brain
 - femoral osteomyelitis caused by yeast
 - Iymphatic and visceral candidiasis
 - invasive esophageal Cryptococcus neoformans infection

- functional immunologic defects:
 - defective granulocyte chemotaxis
 - abnormalities T-cel subgroups
 - defective antibody production
 - decreased production and responsiveness to IFNy and IL-4

- Mutations in STAT3 responsible for AD-HIES
- STAT3 major signal transducer in many divers pathways
- STAT3 deficiency:
 - disturbed cytokine regulation
 - ✓ absence of IL-17
 - excessive and inadequate inflammation leading to pneumatoceles

1

Freeman, J Allergy Clin Immunol 2009

	Lung cyst	McC	age at first pneu moni a	age at first known fungal infection	age at first known pseudomon as infection	age at death	lung resection
1	YES	YES	3	NA	23	29	LLL at 4 y followed by left pneumectomy at 15 y
2	YES	YES	7	AF+AN at 23 y	23	24	no
3	YES	YES	12	AF at 37 y	36	40	no
4	YES	YES	2	AF at 18 y	18	24	RLL at 23 y
5	YES	YES	<10	AF at 27 y	27	29	RUL at 28 y
6	YES	YES	18	AF at 31 y	NA	32	LLL at 31 y

Nijmeegs Universitair Centrum voor Infectieziekten

Freeman, J Allergy Clin Immunol 2009

Hyper-IgE syndrome

Patient	cause of death	PA: lung
(age at death)		
1 (29 y)	acute pulmonary hemorrhage	Cavitary; multi-lobular pneumonia (PSEU) with diffuse hemorrhage
2 (24 y)	prolonged course	Multi-lobular pneumonia; culture with <i>Scedosporium</i> (+ brain & kidneys)
3 (40 y)	acute pulmonary hemorrhage	Cavitary with local vascular invasion by Aspergillus
4 (24 γ)	progressive pneumonia	Multi-lobular pneumonia (PSEU, AF) with intra-alveolar hemorrhage, emphysematous changes
5 (29 y)	multiple CNS bleeds	Cavitary with local vascular invasion by <i>Aspergillus</i> (+ brain)
6 (32 γ)	pneumonia	Cavitary with local vascular invasion by <i>Aspergillus</i> ; PJP outside cavity with acute/chronic inflammation

Freeman, J Allergy Clin Immunol 2009

Antifungal prophylaxis & HIES

Antifungal prophylaxis

- when to start?
- does it prevent kolonisation of cavities?

IFN-y prophylaxis

- in vitro studies promising results
- but mixed clinically results

Conclusions

- Invasive aspergillosis in CGD and HIES patients
 - important with respect to survival
 - will azole prophylaxis increase survival rates?
- Aspergillus nidulans
 - The exclusive role in CGD patients
 - Studies are warranted to analyse why this fungus is a problem
- Antifungal prophylaxis
 - Be aware of changing etiology and resistence problems
- Therapeutic options

St Radboud

as Universitair Centrum voor Infectiezi

UMC

- Be sure to know the fungus you are dealing with
- Targeted therapy possible nowadays