

	MYCOLOGICAL RESEARCH 111 (2007) 509-547	
ELSEVIER	available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/mycres	(CITIES)
David S. HIBBETT F. CANNON ⁴ , Ov Robert LÜCKINC ⁷ David J. MCLAUC Joseph W. SPATA André APTROOT ⁷ CASTLEBURY ⁷⁰ , F. Gareth W. GRIFF Kentaro HOSAKA KÕLJALC ² , Cletus LONGCORE ⁴⁴ , Jol Sharon MOZLEY- REEB ⁴ , Jack D. RO SCHÜKLER ⁴⁷⁰ , Juk	"*, Manfred BINDER ^a , Joseph F. BISCHOFF ^b , Merediti e E. ERIKSSON ^e , Sabine HUHNDORF ^f , Timothy JAM, H. THORSTEN LUMBSCH ^f , François LUTZONI ⁹ , P. B SHLIN ^h , Martha J. POWELL ⁱ , Scott REDHEAD ^j , Com FORA ^k , Joost A. STALPERS ⁱ , Rytas VILGALYS ^a , M. G. ⁱ , Robert BAUER ^o , Dominik BEGEROW ^p , Gerald L. BE edro W. CROUS ⁱ , Yu-Cheng DAI ^T , Walter GAMS ⁱ , D ITH ⁱ , Cécile GUEIDAN ^g , David L. HAWKSWORTH ^u , I ⁽¹⁰⁾ , Richard A. HUMBER [×] , Kevin D. HYDE ^y , Joseph E P. RURTZMAN ^{ad} , Karl-Henrik LARSSON ^{2b} , Robert LI anta MIĄDLIKOWSKA ^g , Andrew MILLER ^{ad} , Jean-Ma STANDRIDGE ^{ag} , Franz OBERWINKLER ^o , Erast PARI GERS ^{ai} , Claude ROUX ^{di} , Leif RYVARDEN ^{ak} , José Paulin tas SUGIYAMA ^{ad} , R. Greq THORN ^{ao} , Leif TIBELL ^{ap} ,	h BLACKWELL ^c , Paul ES ⁹ , Paul M. KIRK ^d , irandon MATHENY ^a , ad L. SCHOCH ^k , Zatherine AIME ^m , SNNY ^q , Lisa A. avid M. GEISER ^s , Geir HESTMARK ^v , I. IRONSIDE ^t , Urmas ICHTWARDT ^{ac} , Joyce arc MONCALVO ^{af} , MASTO ^{ah} , Valérie o SAMPAIO ^{ai} , Arthur Wendy A.

	available a	t www.sciencedirec	t.com	Oral
		ScienceDirec	t	dy
ELSEVIER	journal homepage: www	.intl.elsevierhealth	.com/journals/arc	b //
Isolation of	Candida dublini	ensis in der	ture stom	atitis
Andoni De-Juan ^b Elena Eraso ^a , Gu	, Lucila Madariaga ^a , j Ilermo Quindós ^{a,*}	osé Manuel Agu	irre ^b ,	5
Andoni De-Juan ^b Elena Eraso ^a , Gu ^a Laboratorio de Micología Facultad de Medicina y Od ^b Unidad de Medicina Buco Facultad de Medicina y Od	Lucila Madariaga ^a , j illermo Quindós ^{a,*} Médica, Departamento de Innuno ntologia, Universidad del País Vo I, Servicio Clínica Odontológica, D ntologia, Universidad del País Vo	osé Manuel Agu logía, Microbiología y Par Isco, Apartado 699, E-480 epartamento de Estomato Isco-Euskal Herriko Unibe	irre^b, asitología, 80 Bilbao, Spain ogía, rtsitatea, Bilbao, Spain	
Andoni De-Juan ^b Elena Eraso ^a , Gui ^a Laboratorio de Micología Facultad de Medicina y Od ^U nidad de Medicina Buca Facultad de Medicina y Od 40 pts,	Lucila Madariaga ^a , j illermo Quindós ^{a,*} Médica, Departamento de Inmuno Intología, Universidad del País Vo Servicio Clínica Odontológica, D Intología, Universidad del País Vo 79 isolates	osé Manuel Agu logía, Microbiología y Par Isco, Apartado 699, E-480 epartamento de Estomato Isco-Euskal Herriko Unibe	irre ^b , asitología, 80 Bilbao, Spain ogía, rtsitatea, Bilbao, Spain	ZE ^a
Andoni De-Juan ^b Elena Eraso ^a , Gui ^a Laboratorio de Micología Facultad de Medicina y Od ^b Unidad de Medicina Buca Facultad de Medicina y Od 40 pts, 73% C.	Lucila Madariaga ^a , j illermo Quindós ^{a,*} Wédica, Departamento de Inmuna Intología, Universidad del País Vo I, Servicio Clínica Odontológica, D Intología, Universidad del País Vo 79 isolates albicans	osé Manuel Agu logía, Microbiología y Par Isco, Apartado 699, E-480 epartamento de Estomato Isco-Euskal Herriko Unibe	asitología, 80 Bilbao, Spain ogía, rtsitatea, Bilbao, Spain 1900 - DUBLI FUMOU 38 1910 - DUBLI FUMOU 38 1910 - DUBLI FUMOU 38 1910 - DUBLI FUMOU	ZE [®]
Andoni De-Juan ^b Elena Eraso ^a , Gui ^a Laboratorio de Micología Facultad de Medicina y Od ^b Unidad de Medicina y Od Facultad de Medicina y Od 40 pts, 73% C. 2% C. C	Lucila Madariaga ^a , j Illermo Quindós ^{a,*} Médica, Departamento de Immuno Intologia, Universidad del País Vo Servicio Clinica Odontológica, D Intología, Universidad del País Vo 79 isolates albicans dubliniensis	osé Manuel Agu logía, Microbiología y Par Isco, Apartado 699, 5-44 apartamento de Estomato Isco-Euskal Herriko Unibe	irre ^b , asitología, 80 Bibbao, Spain ogía, rtsitatea, Bibbao, Spain IRCO-DUBLI FUMOU	

	FSDD		FS		Р	
	Mean MIC (µg/mL)	Range (µg/mL)	Mean MIC (µg/mL)	Range (µg/mL)		
Azoles						
Fluconazole	23.520	16-32	0.505	0.12 - 8	< 0.0001	
Posaconazole	0.381	0.03 - 1.0	0.028	0.007 - 0.25	< 0.0001	
Voriconazole	0.353	0.12 - 1.0	0.013	0.007 - 0.12	< 0.0001	
Echinocandins						
Caspofungin	0.033	0.007 - 0.6	0.027	0.007 - 0.06	ns	
Anidulafungin	0.022	0.007 - 0.12	0.030	0.007 - 0.12	ns	
Micafungin	0.018	0.007 - 0.03	0.017	0.007 - 0.03	ns	
Amphotericin B	0.368	0.250 - 0.750	0.386	0.250-0.750	ns	

Table 1

	MLST (multi locus sequence typing)
•	Measures variation in DNA 7 "housekeeping" genes, within which c. 450-500 base-pair fragments ("alleles") are sequenced - AAT1a - ACC1 - ADP1 - MPI1b - SYA1 - VPS13 - ZWF1b Aim: are the patient isolates identical or related? Steps: - PCR amplification - both DNA strands are sequenced - sequences entered into MLST databases: • existing sequence: assigned a genotype number (C. albicans) • new sequence: assigned a new genotype number
	Odds and Jacobsen, 2008; Eukaryotic Cell 7: 1075-1084.

8

Pt no	Strain no	Year	MIC	MLST	MTL zygosity
1	T-384	2001	24	1152	α/a
	T-972	2004	64	1156	α/α
2	T-564	1995	1.0	360	a/a
	T-343	2001	64	360	a/a
3	T-1375	2006	48	1157	α/a
4	T-355	2001	48	1151	a/a
	T-1382	2006	8	1161	a/a
	T-1527	2007	32	1161	a/a
5	T-931	1996	8	1163	a/a
	T-366	2001	48	1163	α/α
	T-916	2004	32	1164	α/α
6	T-344	2001	32	1167	α/a
	T-1108	2004	128	1162	a/a
	T-1179	2005	32	1162	a/a
7	T-695	1995	48	1158	α/a
	T-373	2001	48	1158	α/a
	T-962	2004	128	360	α/a
8	T-985	2004	48	1154	α/a
	T-1270	2006	24	1160	α/a
9	T-983	2004	96	203	a/a

JOURNAL OF CLINICAL MICROBIO 0095-1137/09/\$08.00+0 doi:10.1 Copyright © 2009, American Soc	LOGY, Jan. 2009, p. 129–133 128/JCM.00506-08 iety for Microbiology. All Rights Reserve	d.				Vol. 47, No. 1
Utility of Galact in Diagnosis <i>Asp</i> e	tomannan Enzyme Ir s of Invasive Fungal <i>ergillus fumigatus</i> Infe Malignancy	nmunoa Infectio ection in Patient	assay ar ns: Lov n Hema s [⊽]	nd (1 v Sen atolo	.,3) (nsitiv gic	3-D-Glucan vity for
R. Y. Hachem,	* D. P. Kontoyiannis, R. F. Cl	nemaly, Y.	Jiang, R.	Reitze	l, and	I. Raad
The Departme	ent of Infectious Diseases, Infection Co Texas M. D. Anderson Cancel	ontrol and En Center, Hou	nployee Healt ston, Texas	h, The l	Universit	ty of
TABI f	E 3. Performances of GM er or patients infected with differ Test and organism	zyme imm ent organis Sensitivity (%)	unoassay a sms (per sa Specificity (%)	nd BC ample) PPV (%) ^a	S test NPV (%) ^a	
GM er	nzyme immunoassay	10		0.0		
A. fi	umigatus (n = 69)	13	99	90	66 86	
(7	a = 39	42	,,,	15	00	
Oth	Other mold $(n = 77)$ 6 99 83 62					
BG te	st					
A. fi	umigatus (n = 69)	61	88	75	79	
Nor (r	<i>i-fumigatus Aspergillus</i> species $u = 39$)	64	88	64	88	
Oth	er mold ($n = 76$)	47	88	72	72	
^a pp	V, positive predictive value; NPV,	negative pre	dictive value	».		

CLINICAL AND VACCINE IMMUNOLOGY, July 2008, p. 1095–1105	
1556-6811/08/\$08.00+0 doi:10.1128/CVI.00068-08	
Copyright © 2008, American Society for Microbiology, All Rights Reserve	d

Vol. 15, No. 7

Development of an Immunochromatographic Lateral-Flow Device for Rapid Serodiagnosis of Invasive Aspergillosis^{∇}

Christopher R. Thornton*

Hybridoma Laboratory, School of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom

Specimen no.	IAª	Platelia GM EIA index value	Platelia GM EIA result	Fungitell test β-glucan concn (pg/ml)	Fungitell test result	LFD result
60HD	No			45.90	Negative	1.00
70HD	No			42.40	Negative	-
80HD	No			44.30	Negative	-
90HD	No			44.09	Negative	
813	Yes	0.12	Negative	128.35	Positive	-
815	Yes	0.36	Negative	360.49	Positive	
1263	Yes	0.16	Negative	111.72	Positive	-
1652	Yes	0.32	Negative	111.94	Positive	
1655	Yes	0.35	Negative	104.13	Positive	+9
1657	Yes	0.71	Positive	122.23	Positive	±
1665	Yes	0.16	Negative	108.28	Positive	±
1667	Yes	0.30	Negative	142.19	Positive	±
1130	Probable	2.04	Positive	85.51	Equivocal	+
1131	Probable	1.52	Positive	219.61	Positive	+
1537	Probable	4.64	Positive	782.95	Positive	+2
1538	Probable	4.64	Positive	>500	Positive	+0

•IQAir Particle Scan Pro

•IQAir Particle Scan Pro Airborne Laser Counter

•0.3μm - 5μm

Air quality monitoring of HEPA-filtered hospital rooms by particulate counting

Particle counts of different locations

0

12.10

20.10

28.10

7.11

Date

15.11

Anttila V-J, Nihtinen A, Kuutamo T, Richardson M. 2008.

23.11

1.12

14.12

Location	Mean particle count (part/l)	Range	Number of measurements
13 HEPA-filtered patient rooms of adult HSCT ward	174	7-6309	daily for 12 weeks
Intensive care unit (children), 3 patient rooms	5750	1370-21300	6 separate days
Regular adult patient ward			
- patient room	7450	3200-10600	hourly for one day
- hallway	20870	12000-29000	
Outside air	173659	110806-292624	6 separate days

17

Indoor Air 2008; 18: 225–232 www.blackwellpublishing.com/ina Printed in Singapore. All rights reserved © 2008 The Authors Journal compilation © Blackwell Munksgaard 2008 INDOOR AIR doi:10.1111/j.1600-0668.2008.00526.x Use of (1-3)- β -D-glucan concentrations in dust as a surrogate method for estimating specific fungal exposures 297 dust samples • QPCR: 36 indoor moulds • Glucan assay: • - Cladosporium spp. - Aspergillus spp. - Epicoccum nigrum - Penicillium brevicompactum Alternaria alternata: not a significant source of glucan • Y. lossifova¹, T. Reponen¹, H. Sucharew¹, P. Succop¹, S. Vesper²

Molecular Identification of Filamentous Fungi from Water-Damaged Buildings								
X. Lian ^{1,2} , G.S. de Hoog ¹ , A.H.G. Gerrits van de Ende ¹ , M. Lackner ³ , O. Priha ⁴ , ML.								
Suihko ⁴ , J. Houbraken ¹ , J. Varga ^{1,5} , R.A. Samson ¹ , R.C. Summerbell ⁶ , M. Richardson ⁷ ,								
P. Thompson ⁸ , B. Mälarstig ⁹ and R. Stott ¹⁰								
Table 2. Generic frequencies of identified fungal strains. B Genus Number of strains Percentage (%)								
Penicillium	97	41.45						
Aspergillus	34	14.51						
Cladosporium	27	11.54						
Trichoderma	18	7.69						
Acremonium	Acremonium 13 5.56							
Phoma	11	4.70						
Ulocladium	10	4.28						
Paecilomyces	3	1.28						
Stachybotrys	3	1.28						
Chaetomium	3	1.28						
Gliomastix	2	0.85						
Eurotium	2	0.85						
Rhizopus	2	0.85						
	1							

Learning points "Think fungus!"

•The field of medical mycology has become an extremely challenging study of infections caused by a wide of and taxonomically diverse array of opportunistic fungi.

•Key message: there are no non-pathogenic fungi the extent of infection relies on the degree of immunosuppression, and exposure.

•No fungus should be dismissed out of hand as a contaminant.

•Many of the emerging mycoses are inherently nonsusceptible to standard azole or polyene antifungals.

