PROBLEMS IN ANTIFUNGAL THERAPY

Asko Järvinen Division on Infectious Diseases Department of Medicine Helsinki University Central Hospital

PROBLEMS IN ANTIFUNGAL THERAPY A close look

- Poor absorption
- Drug interactions
- Resistance development – right dosing
- Risk for sudden death

Problems in absorption of older azoles

- Ketoconazole, itraconazole poorly absorbed
- Elevated gastric pH may decrease absorption of ketoconazole by 90 %
- Fluconazole well absorbed
 - bioavailalability around 90 %
- Voriconazole well absorbed
 - high inter-individual variability
 - saturable metabolism
 - with increased dose bioavailability increased i.e. proportion of dose absorbed increased

Absorption of itraconazole

- High inter-individual variability
 - Bioavailability in an average 55 %
 - In some patients bioavailability only some %
- Probably also high intra-individual variability
 - some doses less absorbed / not absorbed
 - failure in pulse therapy?
 - resistance development?
- Oral solution with improved bioavailability
 - more reliable
 - bioavailability increased by 30-40 %

Prentice & Glasmacher, JAC 2005;56 Suppl. S1:i17

Absorption of itraconazole Practical points

- Needs acidic stomach
 - Antacids, H2-blockers and proton pump inhibitors reduce absorption by 20 %
 - Food improves bioavailability
- Acidic drinks improve bioavailability
- Active metabolite hydroxyitraconazole accumulates twice more than itraconazole
 - counteracts problems in topical infections

Drug interactions

- Absorption
- Distribution
 - binding to plasma proteins
 - drug concentrations in tissues
- Excretion
 - into urine
 - into bile
- Drug metabolism
- Effect on same organ / body system

DRUG INTERACTIONS IN METABOLISM

1. Enzyme induction

- a drug increases production of drug metabolizing enzymes
- autoinduction own metabolism facilitated
- heteroinduction metabolism of other drugs facilitated
- leads to decreased drug concentrations
 - elimination half life shortened
 - first pass metabolism diminished
- needs at least a few days to occur

2. Enzyme inhibition

- inhibits metabolism of other drugs
- leads to increased concentration of the other drug
- usually competitive
- starts immediately

Cytochromal enzymes - CYP

- Expressed throughout the phylogenetic spectrum
- Catalyse biotransformation of several endogenous substances and xenobiotics
- Concentrated in liver main pathway for drug metabolism
- many isoforms
 - human CYP's
 - 3 families: 1-3
 - 12 main subfamilies: 1A1 3A7
- drugs metabolised by same CYP have a possibility for interaction
- enzyme induction usually many (all) isoforms)
- enzyme inhibition may be isoform selective Venkatakrishnan et al, Clin Pharmacokinet 2000

Antifungals and CYP

- Azoles inhibit a CYP-family enzyme in fungal membrane 14-α-demethylase
- All azoles are CYP inhibitors
 - potency variable
 - target isoenzymes different
 - possibility to cause interaction
- Many azoles eliminated through CYP mediated metabolism
 - keto-, itra-, vori-, posaconazole
 - potential targets for interaction
- Fluconazole eliminated though excretion into urine
- Terbinafine is a potent CYP 2D6 inhibitor
- Terbinafine metabolised by non-CYP enzymes
- Amfotericin B and caspofungin no effect on CYP
 Venkatakrishnan et al, Clin Pharmacokinet 2000

Enzyme inducers and antifungals

- Azole concentrations decreased
 - also first pass metabolism enhanced
- Azoles increase concentrations of many inducers, e.x. carbamazepine and phenytoin
 -> risk for toxicity
- Concentrations of caspofungin may be decreased
 - dose increased to 70 mg x 1
- Probably no effect on terbinafine

Common Enzyme Inducers

- Barbiturates
- Phenobarbital
- Fenytoin
- Carbamazepin, (oxcarbazepin)
- Rifampicin, Rifabutin
- Spironolactone
- Griseofulvine
- Ethanol

CYP inhibition by antifungals

3A4

- ketoconazole most powerful
- miconazole
- itraconazole, powerful
- voriconazole, powerful
- posaconazole, powerful
- fluconazole, high doses > 200 400 mg/day

2C9 + 2C19

- fluconazole and miconazole, powerful
- voriconazole

2D6

- terbinafine

CYP 3A4 Substrates

- Alfentanil
- Alprazolame
- Amiodarone
- Atorvastatin
- Buspirone
- Diazepam
- Dihydroergotamine
- Diltiazem
- Disopyramide
- Donepezil
- Ebastine
- Ergotamiini
- Ethinyliestradiol
- Feksofenadine
- Finasteride
- Granisetron
- Chinidine
- Chinine
- HIV-protease inihibitors
- Imatinibe
- Carbamazepine
- Ketiapine
- Cortisol
- Loratadin
- Methadone
- Methyliprednisolone

- Midazolame
- Mizolazine
- Montelukast
- Nefazodone
- Nifedipine
- Nisoldipine
- Pioglitazone
- Prednisone
- Repaglinide
- Risperidone
- Sertindole
- Sibutramine
- Cyclosporine
- Sildenafil
- Simvastatin
- Sirolimus
- Cyclofosfamide
- Tacrolimus
- Terfenadine
- Tiagabine
- Tratsodone
- Triazolame
- Tsaleplone
- Venlafaksin
- Verapamil

CYP 3A4 inhibition

Itraconazole, voriconazole, high dose fluconazole

INCREASED CONCENTRATIONS OF OTHER DRUG

- Anticonvulsants
 - phenytoin, carbamazepine
 - azole concentrations decreased
- Benzodiazepines
 - in particular midazolam, triazolam, alprazolam
- Buspirone
- Calcium channel blockers
- Digoxin
- Statins
 - not pravastatin, rosuvastatin
- Antiarrythmic drugs
 - amiodarone, chinidine, lidocaine
- Warfarin

Venkatakrishnan K ym, Clin Pharmacokinet 2000:38(2);111, Gupta AK ym, J Am Acad Dermatol 1999;41:237

Effect of voriconazole on warfarin concentrations

Purkins L, Br J Clin Pharmacol 2003;56:24

CYP 3A4 inhibition

Itraconazole, voriconazole, high dose fluconazole

INCREASED CONCENTRATIONS OF OTHER DRUG

- Cyclosporine, tacrolimus
- HIV protease inhibitors
 - ritonavir boosting increases azole concentrations
- Oral diabetes agents
 - sulphonylurea, glitazones
- Impotence drugs
 - sildenafil, tadalafil
- Some antipsychotics
 - haloperidol
- Opiates
 - fentanyl, sufentanyl, alfentanil, methadone
- Corticosteroids variably

CYP 3A4 inhibition and corticosteroids

Itraconazole, voriconazole, high dose fluconazole

- Elevated dexamethasone and methylprednisolone concentrations
- Smaller / No effect on prednisone

methylprednisolone

dexamethasone

prednisone

Varis T ym, Clin Pharmacol Ther 1998;64:363, Eur J Clin Pharmacol 2000;56:57, Clin Pharmacol Ther 2000;68:487,

CYP 2C9 ja 2C19 inhibition

fluconazole, voriconazole, (ketoconazole)

INCREASED CONCENTRATIONS OF OTHER DRUG

- Tricyclic antidepressants
- Cyclosporine, tacrolimus
- Warfarine
- Oral diabetes drugs
 - sulphonylurea-derivatives
- Anticonvulsants
 - Phenytoin
- Theophylline ?

Interactions even in local administration Miconazole oral cream

- No data on how much absorbed
 - "all drug from mouth to liver"
- Interactions reported with systemic use of miconazole
- CYP 3A4 and 2C9 inhibition
- Significant effect on warfarin reported
- Consider interaction possibility = itraconazole

Pemberton et aö, Brit Dent J 2004

Terbinafine CYP 2D6 inhibition

INCREASED CONCENTRATIONS OF OTHER DRUG

- Tricyclic antidepressants
- Some antipsychotics
 - perfenazine, risperidone, tioridazine, haloperidol
- Some newer antidepressants
 - fluoxetine, paroxetine
- Antiarrythmic drugs
 - propafenone, enkainide
- Analgesics
 - tramadol, oksikodone, codeine, dextrometorphane, ethylmorphine
- Some beta-blockers
 - metoprolol, timolol, propranolo, carvedilol

Antifungals and QTc-time

- QTc-time
 - Electric recovery after heart contraction on electrocardiogram ECG
 - prolonged QTc-time may lead to life threatening arrythmias
 - familialy long QTc-time often behind sudden deaths
- Antimicrobials that prolong QTc-time
 - azole antifungals
 - macrolides

– fluoroquinolones

www.micromedex.com, Roden DM, NEJM 2004;350(10):1013, Owens RC Drugs 2004;64(10):1091

QTc-time

Fig. 1. The cardiac action potential (© 1969. Icon Learning Systems, LLC, a subsidiary of MediMedia USA Inc. Reprinted with permission from ICON Learning Systems, LLC, illustrated by Frank H. Netter, MD. All rights reserved.).^[18] **AV** = atrioventricular; **SA** = sinoatrial.

Owens RC Jr, Drugs 2004;64:1091

Antimicrobials and antifungals have only a minimal own effect on QTc-time

- Not a significant effect on healthy
- Be cautious in patients with known long QTc-time
 - a previous history of the same antifungal use?
 - review other medicines
- Effect on QTc-time is studied on new drugs
 - Sparfloxacin ja grepafloxacin drawn from market due to QTc-time prolongation
- Only single cases described with antimicrobials

www.micromedex.com, Roden DM, NEJM 2004;350(10):1013, Owens RC Drugs 2004;64(10):1091

QTc-time prolongation in antifungals

- Interaction with another QTc-time prolongating drug
 - Antiarrythmials
 - Malaria drugs: chinin, chloroquin, mefloquin
 - Many psychiatric drugs
 - Tricyclic antidepressants
 - Antipsychotics (particularily klozapin, pimozid)
 - Antidepressants: Fluoxetin, venlafaxin
- Caution in patients with other diseases
 - heart disease
 - electrolyte abnormalities
 - liver or renal insufficiency

www.micromedex.com, Roden DM, NEJM 2004;350(10):1013, Owens RC Drugs 2004;64(10):1091

How to avoid resistance development PK / PD data on fluconazole

- Resistance development among Candida avoided by frequent dosing of fluconazole
 - serum concentration > MIC at least 50 % of dosing interval
 - half life only 30 min -> frequent dosing needed
 - t > MIC
 - AUC₂₄ / MIC Andes et al, AAC 2006
- Combination treatment ?
 - systemic + topical?
 - amphotericin B in oral candidiasis