FUNGAL INFECTIONS IN THE ICU PATIENTS - State of the Art -

Jacques Bille, M.D.

Head of the Institute of Medical Microbiology and of the Department of Laboratory Medicine
Attending Physician of the Infectious Diseases Service
University Hospital, Lausanne, Switzerland

3rd Scientific Meeting of the *Nordic Society for Medical Mycology*Oslo, June 7th, 2006.

Why is this topic important?

- Increasing problem
- Mortality higher than in bacterial infections
- Early diagnosis is a challenging problem
- New strategies for recognition and treatment
- Good example of a multidisciplinary approach

Topics to be addressed

Epidemiology

Physiopathology

Risk factors

Clinical diagnosis

Laboratory diagnosis

Therapeutic approaches

Organisms addressed

Organisms not addressed

Candida

Aspergillus

Mucorales

Cryptococcus

other yeasts

other mould

dimorphic fungi

Epidemiology

General trends

Martin C.S. et al., N Engl J Med 2003; 348: 1546.

Epidemiology

Invasive candidiasis - Candidemia 0.2 - 3 / 1000 hospital admissions 2 - 12 / 1000 ICU patients

DK 2003-4	0.49 / 1000	discharges	(Arendrup 2005)
SE 1998-9	0.32 / 1000	admissions	(Klingspor 2004)
NO 1993-6	0.29 / 10'000	pt days	(Sandven 1998)
CH 1991-2000	0.49 / 10'000	pt days	(Marchetti 2004)
EU 1997-9	0.2-0.38 / 1000	admissions	(Tortorano 2004)

Epidemiology

1'417 ICUs in 17 European countries (EPIC Study 1992)

	<u>Total</u> (%)	BSI	wound	<u>UTI</u>
S. aureus	30.0	21.9	26.5	6.0
P. aeruginosa	28.7	9.7	21.2	18.7
CN Staph.	19.1	44.9	0	0
Yeasts	17.1	9.3	8.3	21.2
Enterococci	11.7	10.9	18.2	14.8

Vincent J.L. et al. (EPIC), *JAMA* 1995; <u>274</u>: 639-44.

Spencer et al., *ESCMID* 1996; <u>15</u>: 281.

Epidemiology - Contribution of ICUs

1991-1995

1996-2000

355 episodes of candidemia

309 episodes of candidemia

ICUs: intensive care units

Med; medical, including onco-hematology

Surg: surgical Ped: pediatric

Marchetti O., Bille J. et al., Clinical Infectious Diseases 2004; 38: 311.

Physiopathology

Eggimann P. et al., Lancet Infectious Diseases 2003; 3: 690.

Risk factors for invasive candidiasis

OR (multivariable analyses)

Colonisation **Antibiotics** Vascular access Bladder catheter **Neutropenia TPN** Surgery **AF** prophylaxis Renal failure **Disease severity**

Adapted from Eggimann P. et al., Lancet Infectious Diseases 2003; 3: 685.

Risk factors

Colonisation

Spread from abdominal cavity to other body sites
Heavy or increased growth from peritoneal cavity
High amounts in stool
Multiple site colonization
Patient specific strain carriage
Colonisation rate at entry
during prolonged ICU stay

50-85%

Risk factors | Candida colonisation

Colonisation index: ratio of the nb of body sites colonised to the total nb of body sites cultured

Eggimann P. et al., Lancet Infectious Diseases 2003; 3: 685.

Clinical Diagnosis

Problematic

Clinical presentation variable and non specific

fever 80%

leukocytosis 50%

chorioretinitis 25%

endophtalmitis 10-20%

skin lesions

muscle abscesses

septic arthritis

high grade candiduria in non catheterized patients signs of multi-organ failure

Skin - Candidemia

Candida - Retinitis

© Elsevier 2004. Infectious Diseases 2e - www.idreference.com

Laboratory diagnosis

Candida – Conventional methods

Culture blood

other sterile body sites

urines

other sites (dd colonisation-infection)

 identification to species level antifungal susceptibility testing

Histology biopsies (liver, skin)

Laboratory diagnosis

Candida - indirect tests

- antigen-antibodies
- fungal DNA detection

Mostly evaluated in onco-hematology patients Very few studies in ICU patients Very few commercially available tests

Diagnosis of invasive *Candida* infections Antigen based tests

detection limit

Mannan 0.1 μg/mL specific to *Candida* spp

β-1-3 D
glucan 0.1 pg/mL non specific to Candida spp

Diagnosis of invasive *Candida* infections Mannan (+ antimannan)

Frequency of testing 2-3 times/week ag peak very short

Sendid, *JCM* 1999; <u>37</u>: 1514.

FIG. 4. Examples of kinetic evolution of antigenemia (○) and antimannan antibody response (●) detected by EIA. Patients 39 (a) and 43 (b) had systemic candidiasis. The arrow marks the date of mycological isolation of *C. albicans* from blood and a drain. The curves are drawn by using the interpolate regression.

Diagnosis of invasive *Candida* infections Mannan (+ antimannan)

Sensitivity factors

main variables:

- type of disease candidemia in:
 - oncohematology
 - ICU patients hepatosplenic candidiasis
- species of Candida
- stage of the disease (antibodies)
- frequency of testing (per test or per episode evaluation)

Mannan – antimannan Kinetics according to the type of patients

	n=	+ test before BC	<u>ag +</u>	<u>ab +</u>
Hemato- oncol.	11	100%	82%	36%
ICU pts	15		40%	33%
Surgical pts	17		47%	65 %
Total		73%		

Yera H. et al., *Eur J Clin Microbiol Infect Dis* 2001; <u>20</u>: 864.

Mannan - antimannan Kinetics

45 patients with positive blood culture

Yera H. et al., *Eur J Clin Microbiol Infect Dis* 2001; <u>20</u>: 864.

Mannan – antimannan Sensitivity according to species

	n=	+ test before +BC	<u>%</u>
C.albicans	23	74%	17/23
C.tropicalis	9	100%	9/9
C.parapsilosis	5	60%	3/5
C.glabrata	4	50%	2/4
C.krusei	4	50%	2/4

Yera H. et al., Eur J Clin Microbiol Infect Dis 2001; 20: 864.

Mannan screening in ICU patients

Prospective study of 105 ICU patients (>7 days in ICU) Screening 1x/week

IC n=10 (2 proven, 3 probable)

Colonization rate: 70%

Mannan positive in 60% pt with IC

43% pt colonized

25% pt without colonization

20% of false positive results!

Ibara A.S. et al., *J Mycol Med* 2004; <u>14</u>: 34-42.

Laboratory diagnosis - Candida Detection of mannan and antimannan in hepatosplenic candidiasis

Prella M., Bille J., et al. *Diagnostic Microbiology and Infectious Disease* 2005; 51: 95.

UPDATE ON DIAGNOSIS OF INVASIVE CANDIDA INFECTIONS

Multicenter Clinical Evaluation of β-D-glucan Assay

163 patients with IFI, 170 without - 1 sample taken within 72 hours after diagnosis

107 patients with proven candidiasis

sensitivity 81.3%

All patients sensitivity 70%

specificity 87%

PPV 83.8%

NPV 75.1%

Ostrosky-Zeichner et al., Clinical Infectious Diseases 2005; 41: 654.

UPDATE ON DIAGNOSIS OF INVASIVE CANDIDA INFECTIONS

β-D-glucan for diagnosis of IFI in patients with acute infections

	BG assay positive			
	(Digby 2003)	(Pickering 2005)		
IFI confirmed	96% (25/26)	87% (13/15)		
Bacteremia	73% (8/11)	56% (14/25)		
No infection	22% (2/9)			

Low positive predictive value High negative predictive value (≥ 95%)

Pickering JW et al., *J. Clin Microbiol* 2005; <u>43</u>: 5957. Digby J et al., *Clin Diag Lab Immunol* 2003; <u>10</u>: 882.

Molecular based tests <u>DNA detection (PCR)</u>

Single species/genus versus panfungal High sensitivity (1-10 fg of DNA)

Applied to various body fluids: blood, serum, CSF, BAL

Quantification possible (response to antifungal therapy, differentiation colonization-infection)

No standardized (commercial) assay

→ no prospective multicenter large studies

UPDATE ON DIAGNOSIS OF INVASIVE CANDIDA INFECTIONS

Nucleic acid detection in patients with *Candida* fungemia and/or invasive candidiasis (IC)

<u>Patien</u>	<u>ıts (%)</u>	Contro	ols (%)	Sample	<u>Refe</u> i	<u>rence</u>	
with positi	ve NA test	with posi	tve NA test				
11/14	(79%)	0/29	(0%)	serum	Kan	JID <u>168</u> :	779, 1993
15/16	(93%)	0/34	(0%)	blood	Jordan	JCM <u>32</u> :	2962, 1994
16/18	(89%)	0/6	(0%)	serum	Chryssa	nthou Scand JID <u>26</u>	: 479, 1994
28/28	(100%)	3/31	(10%)	serum	Burnie	EJCMID <u>16</u> :	346, 1997
8/8	(100%)	3/100	(3%)	blood	Einsele	JCM <u>35</u> :	1353, 1997
13/14	(93%)	18/58	(31%)	blood	Morace	JCM <u>37</u> :	1871, 1999
28/30	(95%)		(3%)	blood	White	JCM <u>43</u> :	2181, 2005

Adapted from Yeo and Wong, Clin. Microbiol. Rev. 15, 465, 2002.